일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- sklearn
- 머신러닝
- 랭체인
- konlpy
- deeplearning
- pandas
- python 정렬
- 판다스
- fastapi
- 판다스 데이터정렬
- fastapi #파이썬웹개발
- programmablesearchengine
- 챗gpt
- chatGPT
- NLP
- 비지도학습
- HTML
- OpenAIAPI
- 파이썬
- 파이썬웹개발
- Python
- fastapi #python웹개발
- 파이토치기본
- pytorch
- 자연어분석
- 파이토치
- langchain
- MachineLearning
- 사이킷런
- 딥러닝
- Today
- Total
목록사이킷런 (4)
Data Navigator
Kmeans Clustering 을 활용한 데이터 기반 고객 분류¶ 연령, 소득 수준, 성별에 따른 소비 패턴을 분석하고 분류¶ In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns In [5]: data = pd.read_csv('Mall_Customers.csv', index_col= 0) In [6]: data.head() Out[6]: Gender Age Annual Income (k$) Spending Score (1-100) CustomerID 1 Male 19 15 39 2 Male 21 15 81 3 Female 20 16 6 4 Female 23 16 77 5 F..
KNN 알고리즘을 이용하여 고객이탈 예측하기¶ In [135]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns KNN (K 와 가까운 거리의 그룹으로 계산, K를 어떻게 설정하느냐에 따라서 결과가 달라짐) 통신사 고객 데이터 로딩¶ In [136]: data = pd.read_csv('churn.csv') pd.set_option('display.max_columns', 100) 을 사용하여 100개의 컬럼까지 탐색¶ In [244]: pd.set_option('display.max_columns',100) In [245]: data.head(100) Out[245]: SeniorCit..
Logistic Regression을 활용한 소비자 광고 반응률 예측¶ In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns In [3]: df = pd.read_csv('./03. 광고 반응률 예측 (Logistic Regression)/advertising.csv') df.head(10) Out[3]: Daily Time Spent on Site Age Area Income Daily Internet Usage Ad Topic Line City Male Country Timestamp Clicked on Ad 0 68.95 NaN 61833.90 256.09 Cloned 5t..
02 Linear Regression을 이용한 고객별 연간 지출액 예측(statsmodels 사용)¶ In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns In [2]: data = pd.read_csv('./02 Linear Regression을 이용한 고객별 연간 지출액 예측/ecommerce.csv') In [3]: data.head() Out[3]: Email Address Avatar Avg. Session Length Time on App Time on Website Length of Membership Yearly Amount Spent 0 mstephenson@fe..