일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- konlpy
- deeplearning
- 파이토치
- 판다스 데이터정렬
- 파이썬웹개발
- 챗gpt
- sklearn
- 딥러닝
- OpenAIAPI
- MachineLearning
- 머신러닝
- 판다스
- HTML
- python 정렬
- 자연어분석
- programmablesearchengine
- Python
- 사이킷런
- 비지도학습
- fastapi #파이썬웹개발
- pytorch
- 랭체인
- fastapi #python웹개발
- pandas
- langchain
- fastapi
- chatGPT
- NLP
- 파이썬
- 파이토치기본
- Today
- Total
목록데이터분석 (2)
Data Navigator
기존의 호텔스 닷컴 사용자 리뷰 분석을 gensim 모듈의 Word2Vec을 사용하여 다시 분석해 보았다. Word2Vec는 단어를 벡터화 한 후 단어들 간에 상관도가 높은 것들을 모아서 추출할 수 있다. 1. 분석결과 1) 사용자 리뷰 전체를 벡터화해서 가장 빈도수가 높은 상위 10개 단어들을 넣고 연관 단어를 찾았으나 특이한 점은 발견 할 수 없었음. 2) 평점 8 이상을 good(만족), 7 이하를 bad(불만족)으로 구별하여 각각 다시 벡터화 3) good(만족) 그룹에서는 역시 특이한 점을 찾기 어려웠고 bad(불만족) 그룹에서 의미있는 자료가 나옴 4) bad(불만족) 그룹에서 눈에 띄었던 결과 검색어: 방음 ('옆방', 0.9461838006973267), ('층간', 0.9254038333..
02 Linear Regression을 이용한 고객별 연간 지출액 예측(statsmodels 사용)¶ In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns In [2]: data = pd.read_csv('./02 Linear Regression을 이용한 고객별 연간 지출액 예측/ecommerce.csv') In [3]: data.head() Out[3]: Email Address Avatar Avg. Session Length Time on App Time on Website Length of Membership Yearly Amount Spent 0 mstephenson@fe..