일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 자연어분석
- chatGPT
- fastapi
- fastapi #파이썬웹개발
- OpenAIAPI
- python 정렬
- 딥러닝
- Python
- 파이토치기본
- 랭체인
- konlpy
- programmablesearchengine
- 파이썬웹개발
- NLP
- deeplearning
- fastapi #python웹개발
- sklearn
- HTML
- 판다스
- 파이토치
- pytorch
- langchain
- 파이썬
- MachineLearning
- 머신러닝
- 사이킷런
- pandas
- 챗gpt
- 비지도학습
- 판다스 데이터정렬
- Today
- Total
목록sklearn (5)
Data Navigator
NLP 호텔스닷컴 사용자 후기와 평점 분석 sklearn의 Naive Bayes Classification을 이용 1. 분석 목적 호텔스 닷컴에서 수집한 호텔에 대한 평점과 사용자 리뷰 간의 관계를 파악하고 리뷰 글을 분석해서 평점이 긍정적으로 나올지, 아닐지를 판별하는 예측 모델을 만든다. 2. 분석 대상 데이터 호텔스 닷컴에서 수집한 전국 8884개 호텔, 사용자 리뷰 89,942개 3. 분석 결과 1) 사용자 리뷰 키워드 분석 내용 전체적으로 객실, 친절, 조식, 직원 등의 빈도가 높았고 객실 상태, 직원의 친절한 응대, 조식 음식의 맛과 질이 호텔 사용자 만족도에 크게 영향을 끼침을 알 수 있었음. A. '만족'한 그룹의 사용자 리뷰에서 가장 높은 빈도수를 나타낸 단어는 [친절], [편안], [위..
KNN 알고리즘을 이용하여 고객이탈 예측하기¶ In [135]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns KNN (K 와 가까운 거리의 그룹으로 계산, K를 어떻게 설정하느냐에 따라서 결과가 달라짐) 통신사 고객 데이터 로딩¶ In [136]: data = pd.read_csv('churn.csv') pd.set_option('display.max_columns', 100) 을 사용하여 100개의 컬럼까지 탐색¶ In [244]: pd.set_option('display.max_columns',100) In [245]: data.head(100) Out[245]: SeniorCit..
NLP 상품 리뷰 분석¶ In [2]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns In [3]: data = pd.read_csv('./09. 상품 리뷰 분석(NLP)/yelp.csv', index_col =0) In [4]: data.head() Out[4]: review_id user_id business_id stars date text useful funny cool 2967245 aMleVK0lQcOSNCs56_gSbg miHaLnLanDKfZqZHet0uWw Xp_cWXY5rxDLkX-wqUg-iQ 5 2015-09-30 LOVE the cheeses here. They ..
Logistic Regression을 활용한 소비자 광고 반응률 예측¶ In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns In [3]: df = pd.read_csv('./03. 광고 반응률 예측 (Logistic Regression)/advertising.csv') df.head(10) Out[3]: Daily Time Spent on Site Age Area Income Daily Internet Usage Ad Topic Line City Male Country Timestamp Clicked on Ad 0 68.95 NaN 61833.90 256.09 Cloned 5t..
02 Linear Regression을 이용한 고객별 연간 지출액 예측(statsmodels 사용)¶ In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns In [2]: data = pd.read_csv('./02 Linear Regression을 이용한 고객별 연간 지출액 예측/ecommerce.csv') In [3]: data.head() Out[3]: Email Address Avatar Avg. Session Length Time on App Time on Website Length of Membership Yearly Amount Spent 0 mstephenson@fe..